A Riemannian approach to graph embedding

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Riemannian approach to graph embedding

In this paper, we make use of the relationship between the Laplace-Beltrami operator and the graph Laplacian, for the purposes of embedding a graph onto a Riemannian manifold. To embark on this study, we review some of the basics of Riemannian geometry and explain the relationship between the Laplace-Beltrami operator and the graph Laplacian. Using the properties of Jacobi fields, we show how t...

متن کامل

Graph attribute embedding via Riemannian submersion learning

In this paper, we tackle the problem of embedding a set of relational structures into a metric space for purposes of matching and categorisation. To this end, we view the problem from a Riemannian perspective and make use of the concepts of charts on the manifold to define the embedding as a mixture of class-specific submersions. Formulated in this manner, the mixture weights are recovered usin...

متن کامل

A Recursive Embedding Approach to Median Graph Computation

The median graph has been shown to be a good choice to infer a representative of a set of graphs. It has been successfully applied to graph-based classification and clustering. Nevertheless, its computation is extremely complex. Several approaches have been presented up to now based on different strategies. In this paper we present a new approximate recursive algorithm for median graph computat...

متن کامل

A Structured Learning Approach to Attributed Graph Embedding

In this paper, we describe the use of concepts from structural and statistical pattern recognition for recovering a mapping which can be viewed as an operator on the graph attribute-set. This mapping can be used to embed graphs into spaces where tasks such as categorisation and relational matching can be effected. We depart from concepts in graph theory to introduce mappings as operators over g...

متن کامل

Semi-supervised Graph Embedding Approach to Dynamic Link Prediction

We propose a simple discrete time semi–supervised graph embedding approach to link prediction in dynamic networks. The learned embedding reflects information from both the temporal and cross–sectional network structures, which is performed by defining the loss function as a weighted sum of the supervised loss from past dynamics and the unsupervised loss of predicting the neighborhood context in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2007

ISSN: 0031-3203

DOI: 10.1016/j.patcog.2006.05.031